Midterm (75 minutes)

1. A firm's production is characterized by this Cobb-Douglas production function

$$
\mathrm{Q}=12 \mathrm{~K}^{0.4} \mathrm{~L}^{0.6}
$$

Circle the correct answer to each of these 4 questions:
a. If capital K increases by 5%, what is the approximate percentage change in output Q ?
0.4
0.6
1
2
4.8
b. If capital K increases by 3% and labor L increases by 4%, what is the approximate percentage change in the capital-labor ratio K/L?

-7	-1	0	1	7

c. If price P increases by 5% and output Q falls by 4%, what is the approximate percentage change in revenue PQ ?
-9
-1
0
1
9
d. If capital K and Labor L both increase by 5%, what is the approximate percentage increase in output Q ?
$0 \% \quad 2 \% \quad 8 \% \quad 12 \%$
2. In the constant dividend-growth model, the value of a stock that currently pays a dividend D , that will grow at an annual rate g , and whose dividends are discounted by a required rate of return R , is

$$
V=\frac{D}{R \square g}
$$

a. Determine the elasticity of value with respect to $R: \square=\left|\frac{\partial \mathrm{V}}{\partial \mathrm{R}} \frac{\mathrm{V}}{\mathrm{V}}\right|$
b. Determine whether the value of this elasticity \square is higher or lower for growth stocks; i.e., whether this elasticity \square is increased or decreased by an increase in g.
3. Suppose that a person's utility U depends on two items, X and Y, in this way

$$
\mathrm{U}=3 \ln [\mathrm{X}]+\ln [\mathrm{Y}]
$$

where "In" denotes the natural logarithm. (Be sure to show your work in answering these questions.)
a. Holding Y constant, is $\frac{\partial U}{\partial X}$, the first derivative of utility with respect to X, positive, zero, or negative?
b. Holding Y constant, is the second derivative, $\frac{\partial^{2} U}{\partial X^{2}}$, positive, zero, or negative?
c. An indifference curve with X on the horizontal axis and Y on the vertical axis shows those combinations of X and Y that give a constant level of utility. Set utility equal to a constant amount U_{0} and find the slope of the indifference curve, $\frac{\mathrm{dY}}{\mathrm{dX}}$, at the point $\mathrm{X}=\mathrm{Y}=10$.
d. Interpret the value of $\frac{d Y}{d X}$ determined in part c; for example, if $\frac{d Y}{d X}=5$, does this mean that Y is 5 times X, that the utility from Y is 5 times the utility from X , or what?
4. Consider this cost function that shows how a firm's cost C depends on its output Q , and this inverse demand function that shows how the market price P is related to the quantity Q :

$$
\begin{aligned}
& \mathrm{C}=100 \mathrm{Q}^{1.5} \\
& \mathrm{P}=7500 \mathrm{Q}^{\square 0.5}
\end{aligned}
$$

a. What value of Q maximizes profit $\square=$ revenue $-\operatorname{cost}=\mathrm{PQ}-\mathrm{C}$?
b. What is the value of marginal cost, $\mathrm{MC}=\frac{\mathrm{dC}}{\mathrm{dQ}}$ at the profit-maximizing output?
c. What is the value of marginal revenue, $M R=\frac{d \text { (revenue) }}{d Q}$ at the profit-maximizing output?
d. Explain the economic reason why MC and MR are related at the profit-maximizing level of output.
5. The initial cost of planting a stand of trees is $C=500$ and the dollar value of the volume (in cubic meters) of marketable timber at time t is

$$
\mathrm{Vt}]=100 \mathrm{t}^{0.9}
$$

a. Using a continuously compounded interest rate $\mathrm{R}=0.05$, what is the net present value of the stand if it is harvested at time t?
b. Determine the optimal harvest date t that maximizes the net present value.
c. Show that your answer to part b is a maximum, and not a minimum.
d. Explain the economic meaning of your answer to part b.

