Final Exam Answers

1. a. This equation works: $\mathrm{Y}_{\mathrm{t}}=\mathrm{Y}_{0} \mathrm{e}^{0.05 \mathrm{t}}$
b. If we let spending be C, then $C_{t}=0.9 Y_{t}=0.9 Y_{0} e^{0.05 t}=C_{0} e^{0.05 t}$ and spending grows at a 5% rate too.
c. If we let saving be S, then $S_{t}=0.1 Y_{t}=0.1 Y_{0} e^{0.05 t}=S_{0} e^{0.05 t}$ and saving grows at a 5% rate too.
2. We can use the objective function

$$
\mathrm{Z}=\mathrm{U}=6(10 \mathrm{~L})^{1 / 4} \mathrm{R}^{2 / 4}+\lambda(24-\mathrm{L}-\mathrm{R})
$$

Take the partial derivatives of this utility function with respect to L and R , and set these first derivatives equal to 0 :

$$
\begin{aligned}
& \frac{\partial \mathrm{Z}}{\partial \mathrm{~L}}=1.5(10)(10 \mathrm{~L})^{-3 / 4} \mathrm{R}^{2 / 4}-\lambda=0.25 \frac{\mathrm{U}}{\mathrm{~L}}-\lambda \\
& \frac{\partial \mathrm{Z}}{\partial \mathrm{R}}=3(10 \mathrm{~L})^{1 / 4} \mathrm{R}^{-2 / 4}-\lambda=0.50 \frac{\mathrm{U}}{\mathrm{R}}-\lambda
\end{aligned}
$$

Setting the first derivatives equal to 0 gives $R=2 \mathrm{~L}$:

$$
\begin{aligned}
0.25 \frac{\mathrm{U}}{\mathrm{~L}} & =\lambda \\
0.50 \frac{\mathrm{U}}{\mathrm{R}} & =\lambda \\
0.25 \frac{\mathrm{U}}{\mathrm{~L}} & =0.50 \frac{\mathrm{U}}{\mathrm{R}} \\
\frac{\mathrm{R}}{\mathrm{~L}} & =2
\end{aligned}
$$

This condition $R=2 L$ combined with the time constraint $R+L=24$ gives $L=8$ and $R=16$:

$$
\begin{aligned}
2 \mathrm{~L}+\mathrm{L} & =24 \\
\mathrm{~L} & =8
\end{aligned}
$$

3. Substitution gives a dynamic equation

$$
\mathrm{Y}=\mathrm{a}+\mathrm{bY}+\mathrm{ch}_{-1}
$$

Dynamic equilibrium at Y^{e} requires $\mathrm{Y}=\mathrm{Y}_{-1}=\mathrm{Y}^{\mathrm{e}}$:

$$
\begin{aligned}
\mathrm{Y}^{\mathrm{e}} & =\mathrm{a}+b Y^{\mathrm{e}}+c \mathrm{Y}^{\mathrm{e}} \\
& =\frac{\mathrm{a}}{1-\mathrm{b}-\mathrm{c}}
\end{aligned}
$$

a. The comparative-static effect on dynamic equilibrium of a change in a is

$$
\frac{\Delta \mathrm{Y}}{\Delta \mathrm{a}}=\frac{1}{1-\mathrm{b}-\mathrm{c}}
$$

We can investigate dynamic stability by subtracting the dynamic equilibrium equation $Y^{e}=a+b Y^{e}+c Y^{e}$ from the dynamic equation $\mathrm{Y}=\mathrm{a}+\mathrm{bY}+\mathrm{cY} \mathrm{Y}_{-1}$:

$$
\begin{aligned}
Y-Y^{\mathrm{e}} & =\mathrm{b}\left(\mathrm{Y}-\mathrm{Y}^{\mathrm{e}}\right)+\mathrm{c}\left(\mathrm{Y}_{-1}-\mathrm{Y}^{\mathrm{e}}\right) \\
& =\frac{\mathrm{c}}{1-\mathrm{b}}\left(\mathrm{Y}_{-1}-\mathrm{Y}^{\mathrm{e}}\right)
\end{aligned}
$$

b. The model is monotonically stable if $\mathrm{b}<1$ and $\mathrm{c}<1-\mathrm{b}$ (which implies $\mathrm{b}+\mathrm{c}<1$); e.g., $\mathrm{b}=0.5$, $\mathrm{c}=0.3$
c. The model monotonically unstable if $\mathrm{b}<1$ and $\mathrm{c}>1-\mathrm{b}$ (which implies $\mathrm{b}+\mathrm{c}>1$); e.g., $\mathrm{b}=0.7, \mathrm{c}=0.5$.
d. The model is cyclically stable if $b>1$ and $c<|1-b|$; for example, $b=1.5$ and $c=0.3$
e. The model is cyclically unstable if $\mathrm{b}>1$ and $\mathrm{c}>|1-\mathrm{b}|$; for example, $\mathrm{b}=1.2$ and $\mathrm{c}=0.3$
4. Using Bayes' Rule,

$$
\begin{aligned}
\mathrm{P}\left[\pi=0.49 \text { if } \frac{\mathrm{x}}{\mathrm{n}}=\frac{505}{1000}\right] & =\frac{\mathrm{P}[\pi=0.49] \mathrm{P}\left[\frac{\mathrm{x}}{\mathrm{n}}=\frac{505}{1000} \text { if } \pi=0.49\right]}{\mathrm{P}[\pi=0.49] \mathrm{P}\left[\frac{\mathrm{x}}{\mathrm{n}}=\frac{505}{1000} \text { if } \pi=0.49\right]+\mathrm{P}[\pi=0.51] \mathrm{P}\left[\frac{\mathrm{x}}{\mathrm{n}}=\frac{505}{1000} \text { if } \pi=0.51\right]} \\
& =\frac{0.5(0.016084)}{0.5(0.016084)+0.5(0.023996)} \\
& =0.4013 \\
\mathrm{P}\left[\pi=0.51 \text { if } \frac{\mathrm{x}}{\mathrm{n}}=\frac{505}{1000}\right] & =1-\mathrm{P}\left[\pi=0.49 \text { if } \frac{\mathrm{x}}{\mathrm{n}}=\frac{505}{1000}\right] \\
& =0.559 \quad
\end{aligned}
$$

We can also use a contingency table where we consider two possible situations, one with $\pi=0.49$ and the other with $\pi=0.51$, and $x / n=505 / 1000$ is one of many results that might have been obtained:

$$
\begin{array}{lrrr}
& \mathrm{x} / \mathrm{n}=505 / 1000 & \mathrm{x} / \mathrm{n}=? / 1000 & \mathrm{x} / \mathrm{n}=? / 1000 \\
\pi=0.49 & 0.016084 & & \\
\pi=0.51 & 0.023996 & & 1 \\
\text { Total } & 0.016084+0.023996 & & 1
\end{array}
$$

Therefore,

$$
\begin{aligned}
\mathrm{P}\left[\pi=0.49 \text { if } \frac{\mathrm{x}}{\mathrm{n}}=\frac{505}{1000}\right] & =\frac{0.016084}{0.016084+0.023996} \\
& =0.4013
\end{aligned}
$$

5. Here is the payoff matrix (with the payoffs written as SportsU's probability of winning, opponent's probability of winning):

Opponent's Defense

		run	pass
SportsU's	run	$0.3,0.7$	$0.8,0.2$
play	pass	$0.9,0.1$	$0.2,0.8$

a. There is no noncooperative equilibrium with a fixed strategy.
b. With probabilistic strategies, SportsU's probability of winning is

$$
\begin{aligned}
\mathrm{Z} & =0.3 \mathrm{pq}+0.8 \mathrm{p}(1-\mathrm{q})+0.2(1-\mathrm{p})(1-\mathrm{q})+0.9(1-\mathrm{p}) \mathrm{q} \\
& =0.3 \mathrm{pq}+0.8 \mathrm{p}-0.8 \mathrm{pq}+0.2-0.2 \mathrm{p}-0.2 \mathrm{q}+0.2 \mathrm{pq}+0.9 \mathrm{q}-0.9 \mathrm{pq} \\
& =0.2+0.6 \mathrm{p}+0.7 \mathrm{q}-1.2 \mathrm{pq}
\end{aligned}
$$

The first derivative with respect to p is

$$
0=\frac{\partial \mathrm{Z}}{\partial \mathrm{p}}=0.6-1.2 \mathrm{q} \Rightarrow \mathrm{q}=0.5
$$

The opponent's probability of winning is

$$
\begin{aligned}
\mathrm{Y} & =0.7 \mathrm{pq}+0.2 \mathrm{p}(1-\mathrm{q})+0.8(1-\mathrm{p})(1-\mathrm{q})+0.1(1-\mathrm{p}) \mathrm{q} \\
& =0.7 \mathrm{pq}+0.2 \mathrm{p}-0.2 \mathrm{pq}+0.8-0.8 \mathrm{p}-0.8 q+0.8 \mathrm{pq}+0.1 \mathrm{q}-0.1 \mathrm{pq} \\
& =0.8-0.6 \mathrm{p}-0.7 q+1.2 \mathrm{pq}
\end{aligned}
$$

The first derivative with respect to q is

$$
0=\frac{\partial \mathrm{Y}}{\partial \mathrm{q}}=-0.7+1.2 \mathrm{p} \Rightarrow \mathrm{p}=\frac{0.7}{1.2}=0.583
$$

6. a. By inspection, α
b. β
c. $\lambda \mathrm{P}$ is the price the seller receives, net of the realtor commissions.
d. The market equilibrium price is

$$
\begin{aligned}
\mathrm{B}(\lambda \mathrm{P})^{\beta} & =A \mathrm{P}^{-\alpha} \\
\mathrm{B} \lambda^{\beta} \mathrm{P}^{\beta} & =\mathrm{AP} \\
\mathrm{P}^{\alpha+\beta} & =\frac{\mathrm{A}}{\mathrm{~B} \lambda^{\beta}} \\
\mathrm{P} & =\left(\frac{\mathrm{A}}{\mathrm{~B} \lambda^{\beta}}\right)^{\frac{1}{\alpha+\beta}}
\end{aligned}
$$

7. a. Rewriting the market equilibrium price as

$$
P=\left(\frac{A}{B}\right)^{\frac{1}{\alpha+\beta}}\left(\lambda^{\frac{-\beta}{\alpha+\beta}}\right)
$$

we see that the elasticity of price with respect to λ is $\frac{-\beta}{\alpha+\beta}$.
b. If $\beta=0$, the value of the elasticity of price with respect to λ is 0 .
c. If supply is perfectly inelastic, then changes in the real-estate commission have no effect on the market price. Changes in the commission affect the amount sellers receive, but not the amount buyers pay.
8. a. In matrix form:

$$
\left[\begin{array}{cc}
1-\mathrm{E}_{\mathrm{Y}} & -\mathrm{E}_{\mathrm{R}} \\
\mathrm{~L}_{\mathrm{Y}} & \mathrm{~L}_{\mathrm{R}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{Y} \\
\mathrm{R}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{E}_{0} \\
\mathrm{M}_{0}-\mathrm{L}_{0}
\end{array}\right]
$$

b. The model does not have a unique solution if the determinant is 0 :

$$
\left|\begin{array}{cc}
1-E_{Y} & -E_{R} \\
L_{Y} & L_{R}
\end{array}\right|=\left(1-E_{Y}\right)\left(L_{R}\right)+\left(E_{R}\right)\left(L_{Y}\right)=0
$$

c. If this model has no unique solution, it is because either (a) the two equations are contradictory; or (b) one of the two equations simply restates the first equation. Graphically, the two equations do not have a unique intersection because they are either (a) parallel and never cross; or (b) lie on top of each other.
9. The present value is

$$
\mathrm{P}=-50+100 \mathrm{t}_{1}^{0.9} \mathrm{e}^{-\mathrm{Rt} t_{1}}-50 \mathrm{e}^{-\mathrm{Rt} t_{1}}+100 \mathrm{t}_{2}^{0.9} \mathrm{e}^{-\mathrm{R}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)}
$$

Take the derivatives with respect to the two harvest times:

$$
\begin{aligned}
& \frac{\partial \mathrm{P}}{\partial \mathrm{t}_{1}}=90 \mathrm{t}_{1}^{-0.1} \mathrm{e}^{-R \mathrm{t}_{1}}-100 \mathrm{Rt}_{1}^{0.9} \mathrm{e}^{-R t_{1}}+50 \mathrm{Re}^{-R t_{1}}-100 \mathrm{Rt}_{2}^{0.9} \mathrm{e}^{-\mathrm{R}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)} \\
& \frac{\partial \mathrm{P}}{\partial \mathrm{t}_{2}}=90 \mathrm{t}_{2}^{-0.1} \mathrm{e}^{-\mathrm{R}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)}-100 \mathrm{Rt}_{2}^{0.9} \mathrm{e}^{-\mathrm{R}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)}
\end{aligned}
$$

Setting the first derivatives equal to 0 , we have two equations that can be solved for the values of the two harvest times

$$
\begin{aligned}
90 \mathrm{t}_{1}^{-0.1} \mathrm{e}^{-R t_{1}} & =50 \mathrm{Rt}_{1}^{0.9} \mathrm{e}^{-\mathrm{Rt}}+100 \mathrm{Rt}_{2}^{0.9} \mathrm{e}^{-\mathrm{R}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)} \\
\mathrm{t}_{2} & =\frac{\mathrm{R}}{0.9}
\end{aligned}
$$

10. 11. Target GDP grows at a constant rate: $Y_{t}^{*}=Y_{0}^{*}(1+g)^{t}$, where g is the positive growth rate.
1. The change in actual GDP from one period to the next has a growth term and depends on (a) the gap between actual GDP and target GDP during the previous period; (b) the change in the money supply from the previous period to this period; and (c) a random error term: $\mathrm{Y}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}-1}=\mathrm{g} \mathrm{Y}_{\mathrm{t}-1}+\alpha\left(\mathrm{Y}_{\mathrm{t}-1}-\mathrm{Y}_{\mathrm{t}-1}^{*}\right)+\beta\left(\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}-1}\right)+\varepsilon_{\mathrm{t}}$, where α and β are positive.
2. The change in the money supply from the previous period to this period depends on the gap between actual GDP and target GDP during the previous period: $\mathrm{M}_{\mathrm{t}}-\mathrm{M}_{\mathrm{t}-1}=\lambda\left(\mathrm{Y}_{\mathrm{t}-1}-\mathrm{Y}_{\mathrm{t}-1}^{*}\right)$, where λ is positive.
3. The criterion I would use to measure the effectiveness of the monetary policy is the root mean squared error: $\mathrm{RMSE}=\frac{\sum\left(\mathrm{Y}-\mathrm{Y}^{*}\right)^{2}}{\mathrm{n}}$. Another possibility is the mean absolute error: MAE $=\frac{\sum\left|\mathrm{Y}-\mathrm{Y}^{*}\right|}{\mathrm{n}}$
4. A random number generator would be used to generate values of the random error term for each period of each simulation. A comparison of the RMSEs for different values of λ could be used to determine the optimal value of λ. Ideally, the analysis should be done for a variety of values of the model's other parameters in order to gauge the robustness of the results.
