
Applied Financial Economics, 2007, 17, 425–430

Shrunken interest rate forecasts are

better forecasts

Reid Dorsey-Palmateer and Gary Smith*

Department of Economics, Pomona College, Claremont,

California 91711, USA

Predicted changes in interest rates are imperfectly correlated with actual

changes in interest rates. One statistical consequence may be that large

predicted changes are more likely to be overestimates than underestimates

of the magnitude of the change. If so, the accuracy of predicted interest

rate changes can be improved by shrinking them toward a prior mean of

zero. The application of this idea to interest rate forecasts by the Survey of

Professional Forecasters found a consistent improvement in the accuracy

of their predictions.

I. Introduction

Interest rate forecasts are potentially of great value to

households, businesses and policymakers and there

have beenmany studies on the accuracy of interest rate

forecasts based on macroeconomic models, financial

futures contracts and the term structure (for example,

Friedman, 1979, 1980; Shiller, 1990; Campbell and

Shiller, 1991; Holden and Thompson, 1996;

Baghestani et al., 2000; Den Butter and Jansen, 2004).
Many continuous time models, such as Vasicek

(1977) and Cox et al. (1985), assume that interest

rates revert toward long-equilibrium values. Nowman

(1998) estimated several continuous-time models with

mean reversion for a variety of countries; Hejazi and

Li (2000) found mean reversion in the forward-rate

premiums for US Treasury bills; and Chua et al.

(2005) conclude that yield spreads revert to their

historical averages.
A superficially similar but conceptually quite

different argument is that predictions can often be

improved by taking into account the regression to the

mean that can be expected when people make imper-

fect predictions. Vergin (2001) and Lee and Smith

(2002) identify successful betting strategies based on

the presumption that bettors do not fully appreciate

regression to the mean in the performance of National

Football League teams. Keil et al. (2004) show that the
accuracy of analysts’ earnings forecasts for a cross
section of companies can be improved by shrinking
their forecasts toward the mean forecast. In this
article, we use interest rate forecasts from the Survey
of Professional Forecasters (SPF) to see whether the
accuracy of predicted changes can be improved by
shrinking them toward a prior mean of zero.

II. Regression Toward the Mean

Regression to the mean is frequently encountered in a
sequence of cross section data. For example, Galton
(1886) observed regression toward the mean in his
seminal study of the heights of parents and their adult
children. Tall parents tend to have tall children, but
the children of any two parents are not all of the same
height because parental genes are not the only factor
that determines their children’s heights. Thus, adults
who are 78 inches tall may be somewhat taller or
shorter than their genetically predicted heights, but
the former is more likely because there are many
more people with genetically predicted heights below
78 inches than with genetic heights above 78 inches.
Thus the observed heights of unusually tall parents
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usually overstate the genetic heights that they inherit
from their parents and pass on to their children.
The average heights of the children of unusually tall
(or short) parents regress to the mean.

Similarly, observed athletic performances are an
imperfect measure of skills. Schall and Smith (2000)
looked at major league baseball players from 1901
through 1999 who had at least 50 times at bat or 25
innings pitched in two consecutive seasons. Of 4026
players who had batting averages of 0.300 or higher
in any season, 80% did worse the following season.
Of 3849 players who had earned run averages of 3.00
or lower in any season, 80% did worse the following
season.

The educational testing literature provides a well-
established framework for explaining regression to
the mean in a sequence of cross section data (Kelley,
1947; Lord and Novick, 1968). A person’s true score
� is the statistically expected value of his or her score
on a test. It is assumed that a person’s observed score
X on the test differs from the true score by an
independent and identically distributed error score e:

X ¼ �þ " ð1Þ

Looking at a test involving a group of students,
there is a distribution of true scores and observed
scores. Those who score the highest are likely to have
positive error scores because it would be unusual for
someone to score below his or her true score and still
have the highest score on a test. Since a score that is
high relative to the group is also likely to be high
relative to this person’s true score, this person’s score
on another test is likely to regress toward the mean.

The same principle may apply to a group of interest
rate forecasts made over a period of time. At each
point in time, we interpret � as the expected value of
the change in an interest rate and X as the predicted
change. Looking at a large group of forecasts made
at different times, a natural assumption is that the
distribution of � has a mean of zero. As with
educational tests, large positive values of X are more
likely to have positive " than to have negative ", while
the reverse is true of large negative values of X.
Therefore, the expected value of the change in interest
rates may be closer to zero than is the forecast.

III. A Model of Regression Toward
the Mean

Let the actual change Y in an interest rate at some
point in time have a probability distribution with
expected value �,

Y ¼ �þ !, E ½!� ¼ 0 ð2Þ

and assume that an expert forecast X differs from the

expected value of the actual change by an indepen-

dent and identically distributed error score ":

X ¼ �þ ", E ½"� ¼ 0 ð3Þ

All of these random variables and parameters are

for a given time period but, for notational

simplicity, the time subscript is suppressed. Even

though the forecasts are unbiased, their accuracy can

be improved by shrinking them toward a mean of

zero!
If we look at a set of forecasts and expected values

across time, the population covariance between X and

� is equal to the variance of �:

cov½X,�� ¼ E ½ðX� E ½X�Þð�� E ½��Þ�

¼ E ½ð�� E ½�� þ "� E ½"�Þð�� E ½��Þ�

¼ Eð�� E ½x��Þ2

¼ �2
�

In educational testing, a test’s reliability is gauged

by the squared correlation between scores and

abilities, which equals the ratio of the variance of �
to the variance of X:

�2 ¼
cov½X,��2

�X ��

� �

¼
�2
�

�X��

 !

¼
�2
�

�2
X

ð4Þ

Here, we interpret �2 as the reliability of the

forecast. If the SD of " were 0, the forecasts would

be error free and the reliability would be 1. As the

SD of " becomes infinitely large, the reliability of

the forecasts approaches 0.
If we knew the values of �, we could use

Equation 3 to make unbiased predictions of the

forecasts. Table 1 shows some hypothetical data

for six time periods. The forecasts are 0.5 below

and 0.5 above the expected values of �1, 0 and 1.

Table 1. Hypothetical expected values m
and forecasts X

� X

�1 �1.5
�1 �0.5
0 �0.5
0 0.5
1 0.5
1 1.5
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The forecasts are unbiased with an expected value of

each forecast equal to the expected value of the

change in the interest rate. Figure 1 shows that a

least squares regression of X on � has an estimated

slope of 1.
However, we are interested in the reverse question:

inferring the expected value of the change in the

interest rate from the forecast change. Figure 2 shows

that a least squares regression of � on X has an

estimated slope of 0.727. Since the least squares

regression goes through the mean values of the

variables, the least squares predicted deviation from

the mean of the expected value of the interest rate

change equals 0.727 times the deviation from the

mean of the forecast change:

�� �� ¼ 0:727ðX� �XÞ

In general, if we use a large sample to estimate

� ¼ �þ �Xþ � ð5Þ

by ordinary least squares, the slope will be close to

b ¼
cov½X,��

�2
X

¼
�2
�

�2
X

¼ �2

The squared correlation between X and � should be

used to shrink forecasts toward the mean:

�� �� ¼ �2ðX� �XÞ

In a large sample in which the means of X and � are

close to 0,

� ¼ �2X ð6Þ

Thus, to predict the expected value of the change in

an interest rate, we use the reliability of the forecast

to shrink the expert forecast toward zero.

IV. A Bayesian Interpretation

Recognizing that the error term represents the

cumulative effects of a great many omitted variables

and appealing to the central limit theorem, we assume

that the error term � is normally distributed with

mean 0 and SD �". A convenient conjugate prior for

� is provided by a normal distribution with mean �0

and SD �0. The mean of the posterior distribution for

� is part way between the forecast and our prior

mean:

� ¼
�2
0

�2
0 þ �2

"

Xþ
�2
"

�2
0 þ �2

"

�0 ð7Þ

If we had no information about interest rate

changes in a particular period other than the

analysts’ forecast, we might set the prior mean for

� equal to 0 and the prior SD equal to the SD of

� over time. If so, Equation 7 becomes identical
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to Equation 6:

� ¼
�2
�

�2
� þ �2

"

X

¼ �2X

Implementing the model

In practice, we do not observe � and consequently
cannot use data for X and � to estimate �2. However,
we do have data on Y, the actual change in the
interest rate, and the covariance between X and Y is
equal to the variance of �:

cov½X,Y � ¼ E ½ðX� E ½X�ÞðY� E ½Y �Þ�

¼ E ½ð�� E ½�� þ "� E ½"�Þð�� E ½��

þ !� E ½!�Þ�

¼ Eð�� E ½��Þ2

¼ �2
�

The population correlation between X and Y equals
the ratio of the variance of � to the variance of X,
which Equation 4 shows to be the squared correlation
between X and �:

�XY ¼
cov½XY �

�X�Y

¼
�2
�

�X�Y

¼
�2
�

�2
X

¼ �2 ð8Þ

Thus we can use the sample correlation between X
and Y to estimate �2, which we can then use to
implement Equation 6. The correlation between the
predicted and actual changes should be used to shrink
each forecast toward 0.

It is reasonable that the appropriate shrinkage
depends on the correlation between forecast and
actual changes. If forecast and actual changes were
perfectly correlated, we would not shrink the fore-
casts at all. If forecast and actual changes were
uncorrelated, the forecast would be useless in
predicting interest rate changes. We would ignore
the forecast and predict no change.

Data

The ASA/NBER Economic Outlook Survey was
started by American Statistical Association and the
National Bureau of Economic Research in 1968.

In 1990, the survey was taken over by the Federal
Reserve Bank of Philadelphia and renamed the
SPF. Approximately 35 professional forecasters
are surveyed each quarter. The survey is distributed
near the end of the first month of the quarter
and returned by the middle of the second
month. Quarterly forecasts one-to-four quarters
into the future are available for these three interest
rates:

1. Treasury Bill Rate, three-month, secondary
market rate, discount basis (unadjusted data,
percent, daily). Source: Federal Reserve Release
G.13 or H.15, or Federal Reserve Bulletin
Table 1. 35, Item 21. These forecasts are
available from the third quarter of 1981.

2. Treasury Bond Rate, 10-year, constant-
maturity, secondary market rate (unadjusted
data, percent, daily). Source: Federal Reserve
Release G.13 or H.15, or Federal Reserve
Bulletin Table 1. 35, Item 32. These forecasts
are available from the first quarter of 1992.

3. Moody’s AAA Corporate Bond Yield, (unad-
justed data, percent, daily). Source: Moody’s
Investors Service, or Federal Reserve Release
G.13 or H.15, or Federal Reserve Bulletin
Table 1. 35, Item 40. These forecasts are
available from the third quarter of 1981.

In each case, the quarterly values are averages of
the monthly data and we use the mean of the
professional forecasts. For each interest rate, we
look at the predicted change: the difference between
the predicted future value and the actual value during
the quarter when the forecast is made. We work with
the predicted change in interest rates because zero is a
natural prior mean for a group of predicted changes
made over time.

Our model suggests that analysts’ predicted
changes can be improved by using the correlation
between predicted and actual changes to shrink each
predicted change toward zero. To see whether this is
so, we use the historical data available at the time
of the forecast to estimate the correlation between
predicted and actual interest rate changes. For
example, to adjust the analysts’ forecasts made in
the second quarter of 1998 of the change in Moody’s
AAA Corporate Bond Yield between the second and
fourth quarters of 1998, we calculate the correlation
between forecast and actual two-quarters-ahead
changes in this interest rate using data ending with
the forecasts made in the fourth quarter of 1997. The
adjusted forecast is then calculated by multiplying
this correlation coefficient times the two-quarters-
ahead forecast made in the second quarter of 1998.
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One question is the minimum number of observa-
tions needed to estimate the correlation coefficient.
The fewer the observations, the less confidence we
have in the estimate; but the more the observations,
the fewer adjusted forecasts we have to test the
model. We settled on a minimum of 10 observations
as a reasonable compromise. We also looked at a
minimum of 20 observations and this had no effect on
the results other than reducing the number of
forecasts.

Forecasting accuracy is measured in three ways: the
number of occasions in which the adjusted or
unadjusted forecasts are closer to the actual values,
the mean absolute error (MAE) for the adjusted and
unadjusted forecasts and the root mean square error
(RMSE) for the adjusted and unadjusted forecasts.

V. Results

Table 2 compares the accuracy of the SPF forecasts
and the adjusted forecasts. For a count of the number
of forecasts that were closer to the actual value, the
binomial distribution gives the p-value for a test of
the null hypothesis that each method has a 0.5
probability of being closer to the actual value.
A matched-pair test uses the difference between the
adjusted and unadjusted forecast errors to test
the null hypothesis that the expected value of the
difference is zero; the t distribution gives the p-value.
All of the p-values shown in Table 2 are two sided.

By every measure for every forecast variable, the

adjusted forecasts are more accurate than the SPF
forecasts, though the differences are most statistically
persuasive for long-term bonds. As gauged by the
number of forecasts that were closer to the actual

values, seven of eight two-sided p-values for the long-
term bonds are less than 0.05 and five are less than
0.01. All 12 matched-pair p-values are less than 0.001.

VI. Summary

The statistical principle of regression to the mean
suggests that the accuracy of predicted changes in
interest rates might be improved by using the
historical correlation between predicted and actual

changes to shrink the predicted changes toward a
prior mean of zero. The application of this idea to
interest rate forecasts by the SPF found a consistent
improvement in the accuracy of their predictions.
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