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 Ridge estimates seem motivated by a belief that least squares esti-
 mates tend to be too large, particularly when there is multicol-
 linearity. The ridge solution is to supplement the data by stochasti-
 cally shrinking the estimates toward zero. Although flexibility is
 provided by the abstention from exact exclusion restrictions, ridge
 regression retains many weaknesses of similarly motivated proce-
 dures: a neglect of the basic fact that linear transformations should
 not change the implicit estimates of a model's coefficients, an incorrect
 labeling of nonorthogonal data as weak, and a loose representation of
 a priori beliefs and reliance at times on ad hoc pseudoinformation.
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 1. INTRODUCTION

 The familiar multivariate regression model has been

 found useful in a wide variety of practical applications.
 Researchers often find, however, that their data do not
 contain enough information to answer decisively the
 questions that the researchers have posed. Those with a
 well-defined specification may obtain confidence regions

 that are so large that the point estimates and forecasts
 are of little interest. Those who search for a model may
 find that the variation in a particular dependent variable
 can seemingly be explained equally well by an annoyingly
 wide variety of theoretically motivated and even ran-

 domly selected explanatory variables.
 In response, a minority of researchers are content to

 shrug their shoulders and note the inadequacy of the

 data.' The purest (or laziest) simply estimate a single
 model and note that more precise estimates will require
 more information. Others believe that they have a good
 deal of outside information based on common sense or

 earlier studies. Such researchers commonly try to improve
 the reported estimates by changing their model. They
 may initially limit themselves to a small number of
 explanatory variables that are chosen in part for their
 high variances and relative orthogonality, or they may
 begin with a more complete model and then drop those
 variables with coefficients that are found to be incorrectly
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 I A conscientious referee informed us that the frequent lament,
 "One cannot make bricks without straw," is a common British idiom
 that is "recorded in English literature as early as 1658 in the memoirs
 of the Verney family ... More recently, Sherlock Holmes-who
 had a flair for misquotation-is reported to have said, 'Data! data!
 data! I can't make bricks without clay."' (J.H. Watson, M.D., "The
 Adventure of the Copper Beeches")

 signed or statistically insignificant. The most ambitious
 researchers seem to toil endlessly for that elusive com-

 bination of variables that will yield statistically significant
 and plausibly signed parameter estimates.

 We enthusiastically advocate the use of a priori in-
 formation (e.g., see Smith and Brainard 1976). In
 practice, however, this use too often involves only the
 iterative imposition of exact (typically exclusion) re-

 strictions on individual parameters. Exact restrictions
 are discomforting since they force one into the delicate
 position of having to choose between omniscience and
 ignorance. In addition, a myopic parameter-by-parameter

 procedure neglects the opportunity for hedging provided

 by covariances in the data or the prior information. For
 example, Smith (1974) shows that parameter constraints

 that are individually more accurate than the correspond-
 ing unconstrained estimates may collectively worsen the

 constrained estimates of all the remaining coefficients. In
 particular, setting two "incorrectly signed" coefficients
 equal to zero may worsen the model's forecasting per-
 formance even when the two unconstrained estimates do
 in fact have the wrong signs. Thus, one should be cautious
 about mechanically shrinking individual parameter esti-

 mates toward what are believed to be more likely values.
 This hedging arises in formal Bayesian procedures even

 for a two-parameter problem with orthonormal prior in-
 formation. Consider, for example, a situation in which

 the explanatory variables are highly positively correlated,
 the second explanatory variable has a larger variance
 than the first, and the a priori parameter means are zero
 while both least squares estimates are positive. In this
 situation, the first parameter Bi is more receptive to
 prior information and, as indicated by the negative co-
 variance for the least squares estimates, the data will
 resist reducing (or increasing) both estimates. Prior and
 likelihood contours of this type are displayed in Figure A.
 As one can see from the curve d6colletage (Dickey 1974),
 unless the prior information is quite firm (low variances),
 the optimal procedure is to shrink the estimate of Bi
 toward zero while increasing the estimate of B2. A trial-
 and-error imposition of exact parameter restrictions is

 unlikely to stumble on the optimal estimates or to
 recognize them as such. In the more complicated prob-
 lems that are usually encountered, it will be exceedingly
 difficult to perform the sophisticated mental gymnastics
 that are required to locate satisfactory estimates with a
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 A. A Curve Decolletage
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 simple search procedure. These considerations argue for
 an explicitly Bayesian approach that accurately and
 efficiently incorporates one's a priori beliefs.

 There is a third category of researchers who search over
 various combinations of explanatory variables with little
 regard for a priori information about the parameters.
 These specification searches can be viewed as the iterative
 imposition of exact parameter restrictions on a more
 general model. If these implicit restrictions have no a
 priori weight behind them, then the final reported esti-
 mates and statistics will have little meaning. By empha-
 sizing the estimated variances but neglecting the biases
 that have been introduced (but cannot be measured),
 the researcher does little more than disguise the im-
 precision of the estimates. Techniques such as stepwise
 regression, generalized inverses, and principal components
 involve the formal imposition of wholly ad hoc parameter
 restrictions and will be successful only by fortuitous ac-
 cident (see Smith 1974). It is very difficult to be com-
 fortable with mechanical data manipulation that is
 insensitive to the particular phenomena being modeled
 and to information about the coefficients.

 There has recently been some interest in ridge regres-
 sion as a method for coping with inadequately informa-
 tive data. This approach seems to blend the popular
 practices that we have here disparaged, in that it is often
 motivated by a priori information that it does not ac-
 curately describe and can degenerate into ad hoc data
 manipulation.

 Ridge estimates seem to be motivated by the belief
 that least squares estimates tend to be too large, par-
 ticularly when there is a multicollinearity problem. The
 ridge solution is to supplement the data by stochastically
 shrinking the estimates toward zero. The abstention from
 exact exclusion restrictions contributes to the flexibility
 and attractiveness of the procedure. Unfortunately, ridge
 regression retains many of the weaknesses of earlier

 procedures.

 One characteristic of ridge regression is the neglect of
 the basic fact that a linear transformation of a model
 does not change the model and should not change the
 estimates of a model. A second characteristic is the in-
 correct labeling of nonorthogonal data as inadequately
 informative data. Multicollinearity can be one source of
 weak data, but the strength of the data cannot be
 measured solely by the orthogonality of the data. A third
 characteristic is the use of a loose representation of a
 priori beliefs and the reliance at times on ad hoc
 pseudoinformation.

 In the following sections we will discuss each of these
 points in turn and illustrate them by referring to an
 article by Marquardt and Snee (1975). For simplicity,
 we will discuss only their first example, which deals with
 acetylene data.

 2. WHICH PARAMETERS SHOULD BE
 EXPLICITLY ESTIMATED?

 The standard linear regression model is

 Y = X,B + E, e - N[O, If2I] , (2.1)

 where Y is a (r X 1) vector of observations of the depen-
 dent variable, X is a (T X n) matrix of observations of the
 n independent variables, ,B is an (n X 1) vector of the un-
 observed parameters, and e is a (r X 1) vector of the
 unobserved disturbance term. The elements -i of e are
 assumed to be independent and normally distributed with
 zero means and constant variance of2.

 Estimates of the n elements of A form a basis for the
 implicit estimates of any linear combination of these
 parameters. Indeed, the forecasts of Y are an application
 of these implicit estimates. The model (2.1) can always
 be rewritten as

 Y = (XA)(A-13) + e = Zy + E- (2.2)

 using any nonsingular matrix A. The parameters ,B and
 e are uniquely related by A = AT and their estimates
 should be also. It should make no difference whether ,B is
 estimated explicitly or implicitly from , = Ay.

 A nonsingular linear transformation of a model does
 not change a model and should not change the implicit
 estimates of the model's parameters. Similarly, the
 minimization of a well-defined loss function should not
 depend on whether certain parameters are estimated
 directly or indirectly. If the estimates do vary, then the
 loss function has been inadvertently altered by the
 estimation procedure. There is no theoretical reason to
 prefer the representation of (2.1) to (2.2), and thus the
 decision to estimate explicitly ,B or e should be entirely
 arbitrary. Practitioners should be unsettled by an
 estimation procedure that is affected by this arbitrary
 choice.

 Consider, for example, a consumption function

 C = bo + b1Yp + b2YT + b3rs + b4rL + b5&_1
 + b6L.1 + b7S_2 + bgL_2 + E,
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 where Yp and YT are the permanent and transitory com-

 ponents of income, Y = YP + YT; rs and rL are the
 yields on short-term and long-term assets; and S and L

 are stocks of short-term and long-term assets. One could

 just as easily have written the identical model in a wide

 variety of equivalent ways: instead of Yp and YT, use
 Y and Yp or Y and YT; instead of a consumption func-

 tion, explain saving, S Y - C; instead of rs and rL,

 use rs and rL- rs or rL and rL- rs; instead of S-1 and
 L-1, use S-1 + L-1 and S-1 or S-1 + L-1 and LU1;
 instead of S-i and S-2, use S-2 and S1 -S-2 or S_
 and S-1 - S2. In every case, there is a simple unique
 linear equivalence between both the variables and the

 coefficients. None of these representations is superior to

 the others nor to the infinite variety of less obvious ones
 (such as using Y and 3 Yp - 2YT). They are all fully
 equivalent, and one surely wants to avoid the anxiety
 that should accompany the use of an estimation pro-
 cedure that depends on such choices. The point is obvious,
 but there are a number of instances and even formal
 estimation procedures that ignore it. Ridge regression is
 one of these procedures.

 3. ARE THE DATA INFORMATIVE?

 The starting point for ridge regression (and similarly
 motivated techniques) is the decision that the data are
 inadequate and need to be augmented. The traditional

 yardstick (e.g., see Farrar and Glauber 1967) is to
 measure the intercorrelations among the explanatory

 variables by calculating either the eigenvalues or the
 off-diagonal elements of the moment matrix or its in-
 verse. This is clearly inadequate since the model can
 always be rewritten as from (2.1) to (2.2) so that Z'Z is

 an identity matrix with no off-diagonal elements and all
 eigenvalues equal to one. Because the implicit least
 squares estimates are unchanged, the model is no more
 informative than it was before. High intercorrelations
 among variables have simply been transformed into low

 variances on linear combinations of variables.
 Consider, for example, the earlier consumption func-

 tion and the data assumptions that Yp and YT are un-
 correlated, with respective variances of 9 and 1. With
 Yp and YT as explanatory variables there is no col-

 linearity problem; with Yp and Y there is, since the cor-
 relation coefficient between them is .95. In the first case
 the high variance on the estimate of b2 is attributed to
 the low variance of YT. In the second case, it is attributed
 to the high correlation between Y and Yp. These are, of
 course, equivalent descriptions. We surely do not want
 to use a measure of informational content that depends
 on whether we use Yp and YT or Yp and YP + YT as
 explanatory variables.

 Marquardt and Snee (1975) use such a measure and
 advocate rearranging the explanatory variables to reduce
 the readings on their yardstick:

 In standardizing the predictor variables, the mean is subtracted
 from each variable ("centering") and then the centered variable

 is divided by its standard deviation ("scaling"). Centering
 removes the nonessential ill-conditioning, thus reducing the
 variance inflation in the coefficient estimates. In a linear model
 centering removes the correlation between the constant term
 and all linear terms. In addition, in a quadratic model centering
 reduces and in certain situations completely removes, the cor-
 relation between the linear and quadratic terms. Scaling ex-
 presses the equation in a form that lends itself to more straight-
 forward interpretation and use. (p. 3)

 This standardization applies a unique nonsingular
 linear transformation to the variables and consequently
 has no effect on the model, the least squares forecasts, or
 the implicit least squares estimates of any of the coeffi-
 cients. Consider specifically the acetylene data example
 of Marquardt and Snee. The unstandardized model

 3 3

 Y=bo + Z biXi + Z bijXiX, + e (3.1)
 i=1 i<i<j

 can be rewritten in the equivalent standardized form

 3 3

 Y = [bo + Z biXi + E bijiXXj]
 i=1 i<i<j

 3 3

 + Y [bi + bsiii + Y bijXj]Si(Xi - Xi)/SS
 i=l1i=1

 3

 + Y bijSiSj(Xi - X) (Xi - Xj)/SSiS + E
 i<i<j

 3 3

 = 13o + E j3iZi + , 3oijZiZj + e (3.2)
 i=1 i<i<j

 (where Zi = (Xi - Xi)/Si and the scaling has been by
 Si = [E (Xi - Xi)2/(n -1)]2).

 Because rewriting the model in the form (3.2) does not
 affect any of the implicit estimates, it has no effect on the
 amount of information contained in the data. Nonethe-
 less, Marquardt and Snee consider the representation
 (3.2) to be preferable to (3.1) because of the reduced
 variance inflation factors (VIF), which they use to
 measure ill conditioning and to indicate whether ridge
 regression methods should be used.

 In the general model (2.1), the variance of the least
 squares estimate of fk is given by

 var ($k) = (n -i)Sk2 (1 Rk )

 where Rk2 is the squared multiple correlation coefficient
 between the kth variable and the remaining explanatory
 variables. The variance inflation factor is defined as

 VIF (Ak) = 1/ (1 - Rk2)

 which can be interpreted as the ratio of the variance of
 fk to what that variance would be if Xk were uncorrelated
 with the remaining Xs.

 The inadequacy of this measure is again illustrated by
 the cosmetic extreme of orthogonalizing the data so that
 all the VIF's are equal to one. Because orthogonalization
 does not improve the model or the estimates, VIF's are
 an inadequate measure of ill conditioning. Again, any
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 multicollinearity problem can be equivalently described
 as a problem of low variation, and it can be misleading
 to measure one and neglect the other.

 When the acetylene model is written in form (3.1),
 there are some very high intercorrelations among the
 variables, due in part to the fact that there are only 16
 observations on 9 variables, with 6 of the variables con-
 structed as products of the other 3. One of the more
 dramatic and yet easily understood facets of this example
 is the term blXi2. The only observations on X1 are 6 at
 1,300, 6 at 1,200, and 4 at 1,100, which gives a simple
 correlation between X1 and X12 of .99967. Overall, the
 squared correlation between X12 and the remaining
 variables is .9999996, which gives bil a VIF of 2.5
 million. This means that the variance of bi1 will be large
 unless the variance of X12 is large or the variance of the
 disturbance term is small. In this example, the former is
 3.77 X 1010 and the latter is estimated to be .81258, so
 that

 .81258
 var(bil) = - (2.5 X 106) = .36 X 10-.

 15(3.77 X 10w?)

 Is this large or small? Obviously one cannot say with-
 out knowing something about bil and the use that will
 be made of its estimate. Marquardt and Snee state that
 a VIF of 2 million "is unthinkable and unnecessary,"
 since the model can be written in the standardized form
 (3.2), in which the coefficient of (Xl - Xl)2/S,2 has a
 VIF of less than 2,000, as the squared correlation of this
 variable with the remaining variables in (3.2) is "only"
 .99943. Because the coefficient of this variable is b1Si2,
 the implicit estimate

 bil = (blS)/2

 will be identical to the estimate that is directly obtained
 from (3.1). As they note, scaling does not affect the VIF
 (since it doesn't affect the correlation coefficients), so
 that in form (3.2),

 VIF(b1l) = 1/(1 - .99943) = 1,762.58

 while

 [ 1nla xlx 2 var (bii) (n 1)-(X,_2 2VIF (blS 12)
 .81258

 (15)=(2.656-x107) 1,762.58 = .36 X 10-5 (15) (2.656 X 17

 Thus, the use of form (3.2) has no effect on the estimate
 of bil or on the precision of this estimate. The VIF has
 been reduced by a factor of 1,000 but so has the variance
 of the associated variable, so that the imprecision has
 simply been relabeled a problem of low variation rather
 than one of high covariation. A similar analysis could be
 carried out for any of the estimable coefficients.

 Thus, although some may find the VIF helpful in
 describing the sources of imprecision, it does not measure
 the amount of imprecision and cannot be used to justify

 the reliance on weakly held supplementary information,
 nor can it be used to motivate linear transformations of

 the variables.
 The essential problem with VIF and similar measures

 is that they ignore the parameters while trying to assess

 the information given by the data. Clearly, an evaluation

 of the strength of the data depends on the scale and

 nature of the parameters. One cannot label a variance or

 a confidence interval (or, even worse, a part of the

 variance) as large or small without knowing what the
 parameter is and how much precision is required in the

 estimate of that parameter. In particular, a seemingly

 large variance may be quite satisfactory if the parameter

 is very large, if one has strong a priori information about

 the parameter, or if the parameter is uninteresting (per-

 haps because the associated variable will be constant

 during the forecast period). A meaningful assessment will
 require a well-defined loss function that must necessarily

 depend on the particular problem being examined.

 4. WHAT A PRIORI INFORMATION
 SHOULD BE USED?

 For estimation purposes, Marquardt and Snee (1975)
 prefer to rewrite the model in correlation form:

 -r-3-=E ir zi
 + S i=(n - 1P jjSY L(n - 1) 2( ~~~~~~ L 3 / S-j zzj _ zz_ E-

 + o<j 130 (r-)-s + n-lS (4.1)
 (which is again a transformation that does not alter the

 model). They then argue that "the 'fly in the ointment'
 with least squares is its requirement of unbiasedness....
 Thus, it is meaningful to focus on the achievement of
 small mean square error as the relevant criterion, if a
 major reduction in variance can be obtained as a result
 of allowing a little bias. This is precisely what the ridge
 and generalized inverse solutions accomplish" (p. 5).

 A mean squared error comparison (MSE) for these
 suggested estimators is always ambiguous, however, since
 the size of the bias depends on the unknown population
 values of the parameters. Indeed, most non-Bayesians
 believe that a major advantage of unbiased estimators is
 that the mean squared errors do not depend on the
 actual values of the parameters.

 Alternatively, least squares can be justified on likeli-
 hood grounds or as the mode of the posterior with im-
 proper uniform priors. In response to these justifications,
 Marquardt and Snee argue that a reasonable person
 would have bounded priors and that in correlation form
 "it is exceedingly rare for the population value of any
 regression coefficient to be larger than three in a real
 problem" (p. 6). This claim is consistent with the in-
 terpretation of ridge estimators as a method for intro-
 ducing auxiliary information. The problem is that the

 particular prior information implicit in a ridge regression

 is inadequately justified.

This content downloaded from 132.174.255.86 on Tue, 31 Jul 2018 18:13:22 UTC
All use subject to https://about.jstor.org/terms



 78 Journal of the American Statistical Association, March 1980

 Consider specifically the supplementary information to
 the model (2.1),

 A = b + u

 u ^. N (O, Z)

 Theil and Goldberger's (1961) mixed estimation is a

 classical approach that views ,B as fixed and b and Y as
 random and applies generalized least squares to the two
 sets of data to obtain

 A* = [X'X + UT2Z-1]-1[X/Y + O_f2Z-1b]

 Chipman's (1964) partially Bayesian analysis takes b
 and Y as fixed and (3 as random and obtains ,B* as the

 linear minimum mean squared error estimator. In a fully

 Bayesian approach with known oQ2, (3* is the posterior
 mean.

 Since the ridge estimator is

 = [XIX + kI]-X'XY

 it is possible to motivate ridge regression from a wide

 variety of viewpoints when one actually has a priori in-
 formation of the special form

 b = O and z = U,2I/kk

 which is to say that one has orthogonal priors with com-
 mon variances centered at the origin. Conversely, the
 theoretical inadequacy of ridge regression is that little
 effort is made to assess the appropriateness of these
 implicit priors.

 If the true prior probability distribution for (3 is

 Gaussian, then the prior distribution can always be
 centered, diagonalized, and scaled so that a ridge estima-
 tor is appropriate. That is, the model can be rewritten as
 in (2.2) so that the priors on -y = A-13 are orthonormal.
 The problem with ridge estimation in practice is that the
 model is linearly transformed to center, scale, and
 diagonalize partially the variables rather than the prior
 distributions of the parameters. Indeed, there is no dis-
 cussion of the reasonableness of the implicit assumption
 that the parameters have zero means, zero covariances,
 and identical variances. It is not enough to assert that
 parameters are almost always less than three. The im-
 plicit ridge prior distributions cannot apply to all pa-
 rameters, regardless of how the model is specified.

 Thinking back to the consumption function, which of the

 following parameters should be shrunk towards zero: the
 marginal propensity to consume out of income, the
 marginal propensity to save out of income, the difference
 between the marginal propensities to consume out of
 permanent and transitory income, or the difference be-
 tween .9 and the marginal propensity to consume out of
 permanent income? The researcher's choice will make a
 difference and should be made consciously and explicitly.
 In the acetylene example1 if the prior distributions im-
 plicit in a ridge approach are actually appropriate for the

 model in any one of the forms (3.1), (3.2), or (4.1), then

 ridge regression will be generally inappropriate for the

 remaining forms because the prior variances will not all

 be equal and some of the covariances will be nonzero.

 If one blithely manipulates the data with no regard for

 the appropriateness of the implicit ridge prior distribu-

 tions, the ridge estimates may literally be anything. Even
 if we restrict ourselves to diagonal transformations in

 (2.2) of the model (2.1), the implicit ridge estimates

 - AaR - A[Z'Z + kI]-'Z'Y
 = [X'X + kA-'A-']-'X'Y

 can be set equal to any arbitrary values 5 by selecting
 the n diagonal elements of A to satisfy the n equations

 -X,X(A OLS- kA-'A-15 = X/ :LS_:

 It is of course not the objective of ridge users to obtain

 estimates that have preassigned values. This possibility
 is discussed here to dramatize the arbitrariness of the

 ridge estimates if data manipulation proceeds unchecked

 by an assessment of the reasonableness of the implicit
 ridge priors.

 Similar difficulties arise in the selection of k if the
 ridge user does not take into account the fact that the
 implicit variances on the priors are being set at o-2/k.
 Instead, k is chosen by ad hoc procedures2 whose loose

 theoretical underpinnings are indicated by the arbitrary
 restriction that k be less than one, which compels an

 assumption that the variance of the disturbance term is
 less than the variance on the priors. Inside this range,
 Marquardt and Snee choose a k that yields reasonable

 variance inflation factors (which we have seen to be a
 misleading objective) and parameter estimates that are
 relatively insensitive to small changes in k. Figure B gives
 a ridge trace for the acetylene data example. The inter-
 cepts are the least squares estimates (k = 0); the next
 unit corresponds to k = .0001, and each unit thereafter
 corresponds to a 50 percent increase in k over the pre-
 ceding unit. This logarithmic scale seems the most ap-
 propriate for comparing changes in k. Marquardt and
 Snee indicate that is it not difficult to select k from the

 ridge trace, but we do not view the estimates as stable

 for the k's of .01 or .05 that they selected and, indeed, do
 not see much stability for any values of k less than one.
 In addition, there is the problem that this sensitivity
 analysis is not invariant to linear transformations of the
 model. That is, ridge traces of linear combinations of the
 parameters will not generally show the same regions of
 relative stability. More fundamentally, we do not under-
 stand why k should be chosen on the basis of local in-

 2 Hoerl and Kennard list the following criteria: (a) stable parameter
 estimates, (b) reasonable absolute values for the parameter esti-
 mates, (c) correctly signed parameter estimates, and (d) a reasonable
 value for the residual sum of squares. This is a richer set of objectives,
 although attainment will often be difficult with only one control
 variable. In addition, the selection of k is not based on the theoretical
 interpretation of the parameter. If the researcher can cite reasonable
 values for the coefficients, then the researcher ought to incorporate
 this information directly in a Bayesian fashion, rather than tinker
 with k so that the ex post estimates will be close to the a priori values.
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 sensitivity. Even if the estimates were not much different
 with k at .01 or .02, this is not a convincing argument for
 using these estimates rather than the very different
 estimates that result from a k of .001 or 2.0.

 Marquardt and Snee also write that "If the predictor
 variables are orthogonal, then the coefficients would
 change very little (i.e., the coefficients are already stable)
 indicating the least squares solution is a good set of
 coefficients" (p. 12). We have already pointed out that
 orthogonality does not imply strong data; therefore, the
 ridge trace is misleading if it favors the least squares
 point in this situation. And, since the data can always
 be orthogonalized, this statement by Marquardt and
 Snee illustrates our previous point that the selection of k
 depends on the parameters for which the ridge trace is
 drawn.

 It seems to us that, without prior information, the
 only theoretically defensible use of ridge regression would
 be with a value of k that was so small as to give, for all
 practical purposes, the least squares estimates. One could
 then argue that one was simply assuming proper locally
 almost uniform priors. Marquardt and Snee do in fact
 argue that "the ridge estimate is equivalent to placing
 mild boundedness requirements on the coefficient vector"
 (p. 6). Were this so, ridge estimates would be only a
 formal curiosity. Of course it is not so, since ridge methods
 are specifically intended to obtain estimates that are
 significantly different from the presumedly unsatisfactory
 least squares estimates. This is clear in the acetylene data
 example from a comparison of the estimates in Table 2
 of Marquardt and Snee (1975) and also from an examina-
 tion of the values of k that were used, .01 and .05.

 Using the least squares estimated value of of2, the
 implicit common variances on the priors are, respectively,
 .0328 and .0066, which most would feel are fairly tight
 prior distributions given the size of the least squares
 estimates. In terms of confidence intervals, Marquardt
 and Snee acted as if for each parameter they were 95
 percent confident that the population value of the pa-

 B. Acetylene Data Ridge Trace
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 rameter is no further than .36 or .16 from zero. In con-
 trast, five of the nine least squares estimates are outside
 the larger interval and eight are outside the smaller. It
 seems that they have assumed more than "mild
 boundedness."

 In fact, Theil's suggested test indicates that Marquardt
 and Snee's implicit prior distributions are actually in-
 compatible with the data. For k = .01, the chi-squared
 statistic is 24.7, and for k = .05 it is 93.5, as compared
 with a critical point of 16.9 for a test at the 5 percent
 level. With prior distributions of the ridge type, one
 would have to use a k < .006 to pass Theil's test and a
 much smaller k to be assuming only mild boundedness.

 5. RIDGE REGRESSION, PRINCIPAL COMPONENTS,
 AND MARQUARDT'S GENERALIZED INVERSE

 Marquardt (1970) shows that when the data are trans-
 formed into their principal components, there is a clear
 relationship between ridge regression, principal com-
 ponents analysis, and Marquardt's generalized inverse
 technique.

 If the columns of A in (2.2) are the orthonormal
 eigenvectors of X'X, then the columns of Z are the
 principal components of X'X, and Z'Z is a diagonal
 matrix with the eigenvalues (Xi) of X'X as its diagonal
 elements. The implicit ridge priors on A can be similarly
 transformed as follows:

 A = 0 + U , E(UU') = (o-2/k)I

 -y = A'fl = 0 + A'U , E(A'UU'A) = (o-2/k)I .

 Thus, a ridge analysis could be made by using either the
 original data or the principal components. In this latter
 form, however, the orthogonality of both the data and the
 priors provides estimates that are simple weighted
 averages of the likelihood estimate and the prior mean

 i= (X k) + (_ k) 0

 Those estimates with the largest variances (oQ2/Xi) are
 shrunk the most, and the larger is k, the closer all these
 estimates are to zero.

 There is an obvious similarity between this and the
 usual principal components analysis. In the latter, the
 estimates are typically

 A p A

 Yi = , Xi > h
 =0, Xi < h,

 where h is some selected cutoff point for retaining com-
 ponents. In this form of principal components analysis,
 either zero or the least squares point is selected, depending
 on the relative variance of the least squares estimate. In
 ridge regression, estimates are selected that lie between
 zero and the least squares estimate based also on the
 relative variance of the estimate.

 In Marquardt's generalized inverse technique, al-
 lowance is made for intermediate eigenvalues that are
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 Estimates of the Coefficients of
 the Principal Components

 Least Gener-
 Squares Ridge Estimates alized

 Param- Estimate Inverse
 eter (t statistic) xi k = .01 k = .05 r = 3.8

 Yi (3988) 4.205 .351 .348 .352

 Y2 (-3005 2.163 -.005 -.005 -.005 Y2 (-.39)

 -.600 1.138 -.595 -.575 -.600 Y3 (-35.38)

 .238 1.041 .236 .227 .190
 Y4 (13.43)

 .009 .3845 .009 .008 .0 Y!i ~~(.33)

 Y6 (2.67) .0495 .181 .108 .0

 -.383 .0136 -.221 -.082 .0 Y7 (-2.47)

 Y8 (.521 .0051 .176 .048 .0

 (-1.31) .0001 -.023 -.005 .0
 SSR .0023 .0039 .0067 .0110

 neither obviously large nor small, and the associated
 estimates are put partway between zero and the least
 squares estimate:

 AG A
 ,Y G = i Xi > hi

 =ryi, h2 < xi < hi

 = ?, Xi < h2

 All three of these procedures consequently fit into the
 class of estimators

 es = aiA + (1 -a)Ci (5.1)

 which use simple weighted averages of the least squares

 estimate ei and some point Ci, where the weights 0 < ac
 < 1 depend on the variances of the least square estimates.

 These techniques are consequently all subject to the
 same criticisms of ridge regression that we have made
 here. They are sensitive to unimportant linear trans-
 formations of the model. The strength of the data is
 inadequately measured, and insufficient attention is paid
 to the appropriateness of the implicit priors.

 In this principal components framework, arbitrary
 linear combinations of parameters are shrunk toward
 zero. We will return to the choice of target in a moment.
 First, we should note that the degree of shrinkage de-
 pends only on the relative variance of the least squares
 estimate. This is an inadequate description of the
 strength of the data relative to one's priors since it
 ignores the absolute size of the variances (which depends
 on 'IE), the distance between the least squares estimate
 and the prior mean, and the true strength of one' s prior
 beliefs. These inadequacies are again apparent in the

 acetylene data example. The table displays the least
 squares estimates of the coefficients of the principal com-
 ponents, the associated eigenvalues, the ridge estimates,
 and the generalized inverse estimates.

 Many of the coefficients with low eigenvalues are

 significantly different from zero because of the size of the
 estimates and the small value of aT2. As a consequence,
 four of the six restrictions imposed by the generalized
 inverse procedure would be rejected by individual
 classical hypothesis tests at the 5 percent level, and the
 five exact restrictions would even be rejected by a joint
 test.

 The inadequacy of retaining components on the basis
 of eigenvalues was recognized several years ago by
 Hotelling (1957), who pointed out that components that
 are of little use in explaining variation in the explanatory

 variables may still be very powerful in explaining the
 dependent variable. This had led Massy (1965) and
 others to advocate the deletion of components whose
 coefficients are statistically insignificant. Although this
 avoids the imposition of weakly held restrictions that are
 rejected by the data, it still mechanically overrules the
 likelihood point whenever an arbitrarily selected point
 (zero) is inside the confidence interval. Thus, this ap-
 proach permits one to impose ad hoc constraints where
 the data are very informative (when zero is inside a tight
 band) and to refrain when constraints are badly needed
 (when zero is outside a large band).

 More generally, it is distressing how little effort is
 expended on the selection of a shrinkage target. Zero
 should have no special claim on our attention. The arbi-
 trariness is indicated by the fact that the shrinkage of
 some parameters toward zero necessarily expands other
 linear transformations away from zero. In the earlier
 comsumption function, as the marginal propensity to
 consume moves toward zero, the marginal propensity to
 save moves away from zero. Instead of trying to select
 parameters to shrink towards zero (or choosing them
 arbitrarily), why not select reasonable values to shrink
 the parameters toward?

 These points can be illustrated in more detail with the
 specific loss function adopted by Marquardt and Snee
 (1975) and by Hoerl and Kennard (1970). The MSE
 (or expected squared distance to A) of the estimator A is

 L = E(3- )'(3- = E MSE(Ai)

 The equal weighting of these particular parameters is
 arbitrary. If the data are not orthonormal, this loss func-
 tion does not ensure smaller mean squared prediction
 error.

 Again, we can work with principal components as
 these preserve average MSE

 E 5A'(-) E E(o- 5)'A A'( - A)
 = E(A'f - A'T)'(A' A - A':)

 = E(y - )(- j)

 = E MSE(7i).
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 Now, for the procedures considered here (5.1), if the ai
 were nonstochastic,3 the MSE could be broken into two

 parts,

 EQ(y -i)2 = at2 MSE(?) + (1 - -

 = var(j,) + [bias(,)2 ]2

 Thus, as compared with the least squares estimate (i),

 shrinking unambiguously reduces the variance and in-

 creases the bias. If the least squares variance is not zero

 and (yi - C,)2 is bounded, then there will always be some
 weights at that reduce the MSE. If, however, -yi is un-
 known, then one will also not know whether or not the

 MSE has been reduced.

 Notice also that the variance reduction is entirely in-

 dependent of the shrinking target, Ci. That is, shrinking
 toward the origin is of no advantage for variance reduc-

 tion. Where the choice of target does show up is in the

 squared bias, and here a more accurate target is un-

 ambiguously beneficial. Thus, the origin can only be

 justified as a shrinking target if it is favored over other

 potential targets on a priori grounds. But if one has such

 a priori beliefs, then they should be directly incorporated.

 When the least squares estimates are imprecise, auxiliary

 information is quite useful. Pseudoinformation is of

 dubious value.

 3 This type of analysis is considerably more complex when the ai's
 depend on the least squares estimates and are therefore stochastic
 and is intractable when the ai's are selected from visual inspections
 of ridge traces.
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 Comment

 RONALD A. THISTED*

 1. INTRODUCTION

 In their critique Smith and Campbell mount a spirited

 attack on some basic ridge regression techniques, and in

 this assault I find myself caught on middle ground. I am

 able neither to accept their arguments without reserva-
 tion nor to defend wholeheartedly current ridge practice.

 * Ronald A. Thisted is the Leonard Jimmie Savage Assistant
 Professor in the Department of Statistics and the College, Uni-
 versity of Chicago, 5734 University Ave., Chicago, IL 60637.
 Support for this research was provided by the National Science
 Foundation under Grant No. MCS76-81435. This article contains
 comments presented at the JASA Theory and Methods Invited
 Paper session of the 139th annual meeting of the American Statistical
 Association in Washington, D.C., on August 16, 1979.

 The issues Smith and Campbell raise concern the founda-
 tions of yidge regression, which have never been ade-
 quately examined. It is true that some ridge practices
 rest on shallow footings that can easily be undermined,
 as I demonstrate later. But certain structures seem to
 me to be solid despite Smith and Campbell's objections,
 and their analysis does not justify the conclusion that
 ridge methods have no utility.

 In some respects I agree with Smith and Campbell.
 I am quite sympathetic with their call for explicit

 ? Journal of the American Statistical Association

 March 1980, Volume 75, Number 369
 Theory and Methods Section

This content downloaded from 132.174.255.86 on Tue, 31 Jul 2018 18:13:22 UTC
All use subject to https://about.jstor.org/terms


