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The  
Two-Child  
Paradox 
Reborn?
Stephen Marks and Gary Smith

For at least half a century, probability devotees have 
puzzled over a problem known as the two-child paradox. 
Suppose we know that a family has two children, and we 

learn that one of them is a girl. What is the probability that 
there are two girls? Some have argued that the probability is 
one-half, others that it is one-third.

This problem has reappeared in various guises over the 
years. Does it matter, for example, if we learn not only the 
gender of one of the children, but whether the child is the 
older or younger sibling?

A new variant of the two-child problem was introduced 
recently by Leonard Mlodinow in The Drunkard’s Walk: How 
Randomness Rules Our Lives. Mlodinow argues that the two-child 
probabilities depend on whether the child we learn about has 
an unusual name: The probability of two girls is one-third if 
we learn that one of the children is a girl, but it is one-half if 
we learn that her name is Florida.
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This claim is paradoxical in that it does not seem that know-
ing a child’s name should have any effect on the probability that 
her sibling is male or female.

We will first analyze the classic two-child problem, in which 
it is known only that one of the children is a girl. We will then 
consider the case in which it is also known that the girl is named 
Florida. For both of these scenarios, we will work through two 
approaches: a sample space approach and Bayesian analysis.

The Classic Two-Child Problem
We employ the traditional assumptions that boys and girls are 
equally likely and that the sexes of the children in a family are 
independent. To be clear about which child is which, we let 
BG indicate that, in a two-child family, the older child is a boy 
and the younger a girl, and similarly define GB, GG, and BB. 
Under the traditional assumptions, the probability of each of 
these outcomes is equal to one-fourth.

The Sample Space Approach
The conclusion that the probability of two girls is one-third 
follows from a restricted sample space analysis. It is based on the 
simple inference that, if one of the children is a girl, then there 
cannot be two boys. Because the three other possibilities—GB, 
BG, and GG—are presumed to be equally likely, the probability 
of GG must be one-third.

This analysis is correct if we are solving a different, hypo-
thetical problem in which we draw a family at random from all 
families that are GG, BG, or GB. In this case, there is exactly a 
one-third probability of choosing a GG family. This conclu-
sion is not paradoxical. However, the situation is different if we 
are looking at a family drawn at random from the population 
of all two-child families, and the difference is best revealed 
by Bayesian analysis.
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Table 1—Bayesian Analysis: Mother Mentions Either Child Equally Often

BB BG GB GG Total

Mentions Boy 100 50 50 0 200
Mentions Girl 0 50 50 100 200

Total 100 100 100 100 400

Table 2—Bayesian Analysis: Boys Are Mentioned Only If There Are No Girls

BB BG GB GG Total

Mentions Boy 100 0 0 0 100

Mentions Girl 0 100 100 100 300

Total 100 100 100 100 400

Table 3—Bayesian Analysis: Mother Mentions Child Independent of Gender and Name 

BB BG GB GG Total

Mentions Girl 
Named Florida 0 α50 α50 α100 α200

Mentions Girl Not 
Named Florida 0 (1-α)50 (1-α)50 (1-α)100 (1-α)200

Mentions Boy 100 50 50 0 200

Total 100 100 100 100 400
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The Bayesian Approach
The Bayesian approach begins with “prior probabilities” of 
one-fourth for each of the four possibilities: P(BG) = P(GB) = 
P(GG) = P(BB) = 1/4. It then uses Bayes’ Theorem to calculate 
“posterior probabilities” that are conditional on the new infor-
mation about the family.

One attractive feature of the Bayesian approach is that 
it encourages us to think about how the information was 
obtained. Suppose we learn the sex of one of the children 
because the mother mentions him or her. In this case, the 
mother mentions a girl, Gm, and we wish to find the conditional 
probability that the family is GG, given this information, 
P(GG | Gm).

Applying Bayes’ Theorem, which uses the multiplication 
and addition rules of probability, we get

If the mother has two daughters, she can only mention a 
girl: P(Gm | GG) = 1. If she has two sons, she can only men-
tion a boy: P(Gm | BB) = 0. If she has a son and a daughter, a 
plausible assumption is that she is equally likely to mention 
either child: P(Gm | BG) = P(Gm | GB) = 1/2. Plugging these 
conditional probabilities, and the prior probabilities, into the 
formula, we get P(GG | Gm) = 1/2.

The calculations can be done succinctly using a contin-
gency table. For the case just examined, Table 1 shows the 
expected number of families for various contingencies, based 
on a random sample of 400 families with two children. The 
entries in the interior of the table equal joint probabilities like 
P(GG and G m) multiplied by 400, while the totals equal mar-
ginal probabilities like P(Gm) (for one of the rows) or P(GG) 
(for one of the columns) multiplied by 400.

For example, we expect there to be 100 BG families, and 
that the mother would mention the boy in half of these and 
the girl in the other half. Notice that the outcomes BG, GB, 
and GG are not equally likely once the mother mentions the 
gender of one of the children, contrary to the assumption of 
the sample space approach.

For example, the joint probability P(GG and Gm) equals 
P(Gm | GG) P(GG) = (1)(1/4) = 1/4. This implies an expected 
number of families equal to 100. It is twice the joint probability 
of the family being BG and the girl being mentioned, for which 
the expected number of families is 50. However, no matter 
whether the mother mentions a boy or a girl, her other child 
is equally likely to be a boy or a girl.

For example, if she mentions a girl, we can use the entries 
from the relevant row of the table to see that the probability 
that the other child is a boy is given by (50 + 50)/200 = 1/2, 
while the probability that the other child is a girl is given by 
100/200 = 1/2.

One-third would be the correct answer only under the 
assumption that the mother never mentions a son if she has a 
daughter: P(Gm | BG) = P(Gm | GB) = 1. Based on the expected 

numbers of families shown in Table 2, which applies this 
assumption, the probability of a two-girl family equals one-
third if the mother mentions a girl and the probability of a 
two-boy family equals one if she mentions a boy.

This extreme assumption is never included in the presenta-
tion of the two-child problem, however, and is surely not what 
people have in mind when they present it.

A Girl Named Florida
Mlodinow examines the two-child probabilities in the case in 
which it is learned one of the children is a girl named Florida, 
evidently an unusual name. He begins with this statement of 
the classic two-child problem:

Suppose a mother is carrying fraternal twins and wants 
to know the odds of having two girls, a boy and a girl, 
and so on … In the two-daughter problem, an additional 
question is usually asked: What are the chances, given that 
one of the children is a girl, that both children will be girls?

His answer to the first question is the usual equal probabilities 
for BB, BG, GB, and GG. His answer to the second question 
is one-third, based on the sample-space analysis of the classic 
two-child problem.

As shown above, this is fine if Mlodinow does not mean that 
one of the two children is observed or mentioned to be a girl, but 
rather is answering a hypothetical question about the chances of 
there being two girls in families that do not have two boys.

Mlodinow later writes the following:

[I]f you learn that one of the children is a girl named 
Florida … the answer is not 1 in 3—as it was in the 
two-daughter problem—but 1 in 2. The added infor-
mation—your knowledge of the girl’s name—makes a 
difference.

Mlodinow is not talking about hypothetical families that do 
not have two boys. The fraternal twins have been born, and we 
learn that one of the children is a girl named Florida.

Mlodinow supposes that one in a million girls are named 
Florida. We will generalize this slightly and suppose that a 
fraction α of girls is named Florida. Like Mlodinow, we suppose 
children are named independently, so that, in principle, a family 
could have two girls named Florida.

Bayesian Analysis
Table 3 shows the expected numbers of families for the Bayesian 
analysis, under the assumption that we learn about a randomly 
selected child from a randomly selected family. Thus, like Table 
1, it assumes a mother is equally likely to mention a boy or girl 
if there is one of each. Similarly, the conditional probability 
that the mother mentions a girl named Florida, if she mentions 
a girl, equals the fraction of girls named Florida, α. Thus, for 
the 100 cases in which a BG family is selected, it is expected 
that a boy will be mentioned in 50 cases and a girl in 50 cases, 
with α50 of the mentioned girls named Florida and (1 – α)50 
not named Florida. For the GG column, no matter whether the 
mother mentions the older daughter or the younger daughter, 
the probability is α that the girl’s name is Florida and 1 – α that 
it is not Florida. 
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Table 4—Exact Expected Numbers of Families for Mlodinow’s Question

BG GB GG Total

Families With a 
Girl Named 

Florida
α100 α100 α(2-α)100 α(4-α)100

Families With 
No Girl Named 

Florida
(1-α)100 (1-α)100 (1-α)2100 (3-α)(1-α)100

Total 100 100 100 300

If the mother mentions a girl named Florida, Fm, the con-
ditional probability that she comes from a two-girl family is 
one-half, regardless of the value of α:
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Similarly, if the mother mentions a girl not named Florida, 
Nm, the probability that she comes from a GG family is also 
one-half, regardless of the value of α:

 
Thus, if the mother mentions a girl, the probability 

of two girls is one-half, no matter what her name is. The 
answer is the same as in our original Bayesian analysis: 
There is no paradox.

Mlodinow’s Approach
 Mlodinow does not answer the question he poses about the 
probability that a given family will have two girls, if we learn 
it has a girl named Florida. Instead, he gives an approximate 
answer to a different, hypothetical question: Among all BG, 
GB, and GG families that have a daughter named Florida, 
what proportion are GG? His approximation is one-half. This 
analysis parallels his take on the classic two-child problem. 

Mlodinow purports to use a Bayesian approach, which he 
says “is to use new information to prune the sample space.” 
However, a Bayesian analysis must account for the conditional 
probabilities that we would observe or learn about a girl, named 
Florida or otherwise, for different family types, and this Mlo-
dinow does not do. Instead, he does a restricted sample space 
analysis much like the conventional analysis of the two-child 
problem. Despite these issues, his analysis is instructive.

Mlodinow assumes 100 million families, but we will assume 
400 to be comparable with our earlier analyses. Let GF indicate 
that a girl is named Florida and GN that she is not. We will 
denote birth order as above.

With his assumption that α is tiny—one in a million—
Mlodinow infers that the expected number of GFGF families 
(equal to α2100) is, for practical purposes, zero. He also infers, 
since girls not named Florida are almost as numerous as boys, 
that the expected number of BGF families (equal to α100) is, 
for practical purposes, equal to that of GNGF families (equal 
to α(1 – α)100).

The commonality in these assumptions is that second-order 
terms in α2 are so small they can be ignored. Since BGF and GFB 
families are expected in equal numbers, as are GNGF and GFGN 
families, Mlodinow then concludes that BGF, GFB, GNGF, and 
GFGN families are all equally likely. With GFGF families ruled 
out, the proportion of GG families in the BG, GB, and GG 
families with a girl named Florida is then equal to one-half.

To provide a further rationale for his analysis, Mlodinow 
offers a second set of calculations. Table 4 shows the relevant 
exact calculations of expected numbers of families in which 
there is at least one girl. We can rule out BB, and thus start 
with the 300 BG, GB, and GG families.

Of the 100 BG and 100 GB families, a fraction α has a girl 
named Florida. Of the 100 GG families, a fraction α of the 
older girls is named Florida and, of the (1 – α)100 families in 
which the older girl is not named Florida, a fraction α of the 

.
2
1

2001
1001N |GG mP



CHANCE        59

younger girls is named Florida, giving a total of α100 + (1 – 
α) α100 = α(2 – α)100 GG families with girls named Florida. 
The second row of the table can be most easily obtained by 
subtracting the entries in the first row from the totals for 
each column.

To translate his presentation to our framework, Mlodinow 
would observe that we expect 2 α100 families with a girl named 
Florida to be BG or GB, as shown in Table 4. He would then 
note that, of the 100 expected GG families, α100 will have 
an older child named Florida and α100 will have the younger 
child named Florida, yielding 2 α100 GG families with a girl 
named Florida.

The approximation α2 = 0 is important in this case as well, as 
is clear from the GG entry in the first row of Table 4, because 
otherwise there would be double counting of families in which 
both girls are named Florida. Mlodinow would then conclude 
that the fraction of GG families in BG, GB, and GG families 
with a girl named Florida is approximately equal to 2 α100/(2 
α100 + 2 α100) = 1/2.

It turns out that this last set of calculations approximates 
an exact calculation in which girls are counted, rather than 
families. In BG and GB families combined, there are expected 
to be exactly 2 α100 girls named Florida, and the same number 
in GG families. There are half as many GG families as there 
are BG plus GB families combined, but twice as many girls per 
family and thus twice as many girls named Florida, under the 
independence assumption.

Thus, in the second variant of his analysis, Mlodinow is in 
effect answering yet another, but still hypothetical, question: 
What fraction of girls named Florida from two-child families is 
from two-girl families? However, the exact analysis of this case 
applies for a girl of any name, and indeed for girls in general. If 
a girl is randomly selected from all BG, GB, and GG families, 
the probability that she came from a GG family is exactly 
one-half. In particular, the fraction of girls named Florida from 
two-girl families is independent of the value of α: 2 α100/(2 
α100 + 2 α100) = 1/2. Thus, it is irrelevant in this variant of 
the analysis that the girl has an unusual name.

Finally, we can generalize Mlodinow’s analysis on its own 
terms, using the exact formulas in Table 4. For families with a 
girl named Florida, the fraction of BG, GB, and GG families 
that is GG equals (2 – α)/(4 – α). Mlodinow, in effect, finds 
the limit of this formula as α approaches zero, obtaining his 
answer of one-half.

The other extreme is for α to approach one. All girls 
are named Florida, so that being a girl named Florida is 
equivalent to being a girl. In this case, the formula evaluates 
to one-third, which is the fraction of all BG, GB, and GG 
families that are GG.

In general, if we consider families with a girl named Florida, 
as the name becomes increasingly rare, the number of families 
that is GG goes down more slowly than the combined number 
of those that are BG, GB, or GG, and so the fraction of BG, 
GB, or GG families that are GG goes up.

Discussion
A general question is how best to accommodate new informa-
tion into the evaluation of uncertain situations. Use of the 
restricted sample space approach for the two-child problem 
does not yield a proper conditional probability that a family 

has, say, two girls, given that one has learned that one of the 
children is a girl. All it offers, in this case, is a hypothetical 
calculation of the fraction of BG, GB, and GG families that are 
GG. In the classic two-child problem, it also offers an errone-
ous illusion of simplicity—that, in general, a two-child family 
is equally likely to be BG, GB, or GG if we learn one of the 
children is a girl.

In contrast, the Bayesian approach provides useful condi-
tional probabilities that can be applied directly to a family at 
hand as we acquire new information about it. It also provides 
discipline in that it requires us to be clear about the full set of 
assumptions that enter into our probabilistic inferences.

In this analysis, we think we have made plausible assump-
tions about the probability that a mother would mention a girl 
versus a boy, depending on whether the family is BB, BG, GB, 
or GG, but the Bayesian approach offers the flexibility to 
accommodate alternative sets of assumptions in any case.  
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